训练大型神经网络(NN)模型需要广泛的记忆资源,而激活压缩训练(ACT)是减少训练记忆足迹的一种有前途的方法。本文介绍了GACT,这是一个ACT框架,旨在支持具有有限域知识的通用NN体系结构的广泛机器学习任务。通过分析ACT近似梯度的线性化版本,我们证明了GACT的收敛性,而没有有关操作员类型或模型体系结构的先验知识。为了使训练保持稳定,我们提出了一种算法,该算法通过估计运行时对梯度的影响来决定每个张量的压缩比。我们将GACT实施为Pytorch库,很容易适用于任何NN体系结构。GACT将卷积NN,变压器和图形NNS的激活记忆降低到8.1倍,从而使4.2倍至24.7倍的训练能够较大,而精度损失可忽略不计。
translated by 谷歌翻译
最近,为了提高无监督的图像检索性能,通过设计语义相似性矩阵提出了许多无监督的哈希方法,该方法基于预先训练的CNN模型提取的图像功能之间的相似性。但是,这些方法中的大多数倾向于忽略图像中包含的高级抽象语义概念。直观地,概念在计算图像之间的相似性中起着重要作用。在实际情况下,每个图像都与某些概念相关联,如果两个图像共享更相同的概念,则两个图像之间的相似性将更大。受到上述直觉的启发,在这项工作中,我们提出了一种带有语义概念挖掘的新颖无监督的散列散布,称为UHSCM,该挖掘利用VLP模型来构建高质量的相似性矩阵。具体而言,首先收集一组随机选择的概念。然后,通过使用及时的工程进行视觉预审进(VLP)模型,该模型在视觉表示学习中表现出强大的力量,根据训练图像将一组概念降低。接下来,提出的方法UHSCM应用了VLP模型,并再次提示挖掘每个图像的概念分布,并基于挖掘的概念分布构建高质量的语义相似性矩阵。最后,以语义相似性矩阵作为指导信息,提出了一种新颖的散列损失,并提出了基于对比度损失的正则化项,以优化哈希网络。在三个基准数据集上进行的大量实验表明,所提出的方法在图像检索任务中优于最新基准。
translated by 谷歌翻译
将基于深学习视频编码已经吸引了大量的关注它的巨大潜力排挤视频序列的时空冗余。本文提出了一种高效的编解码器,即双路径生成对抗性的基于网络的视频编解码器(DGVC)。首先,我们提出了一个双通道的增强与生成对抗网络(DPEG)重建压缩视频的详细信息。所述DPEG由一个$ \阿尔法$自动编码器和卷积长短期记忆(ConvLSTM),它具有大的感受域和多帧的引用,和$ \测试$利于结构特征重构的-path - 残余关注块的路径,这有利于局部纹理特征的重建。两条路径融合,并通过生成对抗性的流程协同训练。其次,我们重用两个运动补偿和质量增强模块,这是与运动估计进一步结合DPEG网络,并在我们的DGVC框架熵编码模块。第三,我们采用深视频压缩和提高了联合训练,进一步提高率失真(RD)性能。与X265 LDP非常快的方式相比,我们的DGVC由39.39%/ 54.92%在相同的PSNR / MS-SSIM,其通过一个胜过国家的本领域深视频编解码器降低平均比特每像素(BPP)相当幅度。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译